ENDOR evidence of electron-H2 interaction in a fulleride embedding H2.

نویسندگان

  • Alfonso Zoleo
  • Ronald G Lawler
  • Xuegong Lei
  • Yongjun Li
  • Yasujiro Murata
  • Koichi Komatsu
  • Marilena Di Valentin
  • Marco Ruzzi
  • Nicholas J Turro
چکیده

An endofulleropyrrolidine, with H2 as a guest, has been reduced to a paramagnetic endofulleride radical anion. The magnetic interaction between the electron delocalized on the fullerene cage and the guest H2 has been probed by pulsed ENDOR. The experimental hyperfine couplings between the electron and the H2 guest were measured, and their values agree very well with DFT calculations. This agreement provides clear evidence of magnetic communication between the electron density of the fullerene host cage and H2 guest. The ortho-H2/para-H2 interconversion is revealed by temperature-dependent ENDOR measurements at low temperature. The conversion of the paramagnetic ortho-H2 to the diamagnetic para-H2 causes the ENDOR signal to decrease as the temperature is lowered due to the spin catalysis by the paramagnetic fullerene cage of the radical anion fulleride.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct detection of a hydrogen ligand in the [NiFe] center of the regulatory H2-sensing hydrogenase from Ralstonia eutropha in its reduced state by HYSCORE and ENDOR spectroscopy.

The regulatory H2-sensing [NiFe] hydrogenase of the beta-proteobacterium Ralstonia eutropha displays an Ni-C "active" state after reduction with H2 that is very similar to the reduced Ni-C state of standard [NiFe] hydrogenases. Pulse electron nuclear double resonance (ENDOR) and four-pulse ESEEM (hyperfine sublevel correlation, HYSCORE) spectroscopy are applied to obtain structural information ...

متن کامل

Physical adsorption between mono and diatomic gases inside of Carbon nanotube with respect to potential energy

In this paper we have down three theoretical study by using Monte Carlo simulation and Mm+,AMBER and OPLS force field. The calculations were carried out using Hyper Chem professional,release 7.01 package of program. first we have studied the interaction of H2 molecule and He atomwith single-walled carbon nanotube at different temperature. For doing this study we placed H2 andHe in the center an...

متن کامل

Possible superfluidity of molecular hydrogen in a two-dimensional crystal phase of sodium

We theoretically investigate the ground-state properties of a molecular para-hydrogen (p-H2) film in which crystallization is energetically frustrated by embedding sodium (Na) atoms periodically distributed in a triangular lattice. In order to fully deal with the quantum nature of p-H2 molecules, we employ the diffusion Monte Carlo method and realistic semiempirical pairwise potentials describi...

متن کامل

Hydrogen Adsorption on (5,0) and (3,3) Na-decorated BNNTs

The storage capacity of hydrogen on Na-decorated born nitride nanotubes (BNNTs) is investigated by using density functional theory within Quantum Espresso and Gaussian 09. The results obtained predict that a single Na atom tends to occupy above the central region of the hexagonal rings in (5,0) and (3,3) BNNT structures with a binding energy of -2.67 and -4.28 eV/Na-atom respectively. When a si...

متن کامل

High level Ab inito bench mark computaions on weak interactions (H2)2 dimer revisited

The Potential Energy Surface PES of (H2)2 dimer has been investigated, using five simple rigid rotor models. These models are called: head to head, symmetric side to side, L , steplike and T model. All calculations were done at two levels of ab initio  methods: MP2(Full) and QCISD (T,Full) using cc-pVTZ basis set at singlet state of spin multiplicity. The results of scanning PES were then fitte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 134 31  شماره 

صفحات  -

تاریخ انتشار 2012